Heterocycle Stabilized Carbanions. Two Series of Anomalous Products from 1-Alkyl-4,6-diphenyl-2-pyridones

By Alan R. Katritzky,* John Arrowsmith, Nicholas E. Grzeskowiak, Hector J. Salgado, and Zakaria bin Bahari, School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, England and Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.

1-Methyl-, 1-ethyl, and 1-n-butyl-4,6-diphenyl-2-pyridones with lithium di-isopropylamide yield normal products with ketone and aldehydes as electrophiles, but dimeric derivatives with acid chlorides, esters, and alkyl halides. The alkylpyridones react with ethyl- and n-butyl-lithium and an electrophile to give products resulting from alkyl-ation at the 3- and reaction with electrophile at the 4-position. Structures are supported by spectra and reaction mechanisms discussed.

1-BENZYL-4,6-DIPHENYL-2-PYRIDONE (1a) with lithium di-isopropylamide (LDA) gives a stable α -anion (2a), which undergoes clean α -alkylation on addition of electrophiles.¹ We now show that 1-alkyl-4,6-diphenyl-2-pyridones (1b---d) when treated likewise frequently undergo anomalous dimerisations in place of the expected α -substitution.²

Normal α -Substitution Products.—Examples of these can be obtained via metallation of the N-methyl-, Nethyl-, and N-butyl-pyridones (1b—d). The reaction is carried out in the normal manner for aldehydes, ketones, and methyl iodide as electrophile. However, for ethyl benzoate as electrophile special conditions were needed: LDA was added to a mixture of the N-methylpyridone (1b) and PhCO₂Et, and the generated anion (2b) reacted

compound (1c) reacted in situ with benzophenone to

give the alcohol (3c) (48%), with p-toluoaldehyde to

give the alcohol (3d) (44%), and with methyl benzoate to

a; R = H, $R' = Ph_2C(OH)$ b; R = H, R' = COPhc; R = Me, $R' = Ph_2C(OH)$ d; R = Me, $R' = MeC_6H_4CH(OH)$ e; R = Me, R' = COPhf; $R = Pr^n$, $R' = Ph_2C(OH)$ g; R = H, $R' = p-MeC_6H_4C(=NH)$

give the ketone (3e) (12%). The anion (2d) thus generated from the *N*-butylpyridone (1d) reacted similarly with benzophenone to give the alcohol (3f) (64%).

The spectra of the α -substitution products (3a—f) (these results have been treated as a Supplementary

			F	reparatior	ı of α-su	bstitu	ition prod	lucts a							
	Si	ubstituents		_			-								
	· · · · · · · · · · · · · · · · · · ·								Fo	und 9	0		Rea	uired	0
Product	R			Metallation #	Reaction #	Yield		Crystal ø	<u> </u>		<u> </u>				
no.	retained	R'introduced	Procedure	time/min	time/h	(%)	М.р. (°С)	form	С	н	N	Formula	С	H	N
(1c)	н	Me	в	1	10	25	108—109 c	Needles							
(3a)	н	Ph _s C(OH)	в	30	12	67	198 - 199	Prisms d	83.7	5.7	3.2	C., H., NO.	84.0	5.6	3.1
(3b)	н	PhCO	Α	30	12	25	233	Rods	82.0	5.3	3.8	C,H,NO,	82.2	5.2	3.8
(3c)	Me	Ph ₂ C(OH)	в	30	8	48	185	Prisms	84.0	5.9	3.0	C ₃₂ H ₂₂ NO,	84.0	5.9	3.1
(3d)	Me	p-MeC ₆ H ₄ CH(OH)	в	45	10	44	185 - 210	Prisms	81.7	6.1	3.5	C ₂₇ H ₂₅ NO ₂	82.0	6.3	3.5
							decomp.								
(3e)	Me	PhCO	Α		4	12	182 - 185	Prisms	82.3	5.6	3.4	C24H21NO2	82.3	5.5	3.7
(3f)	Prn	Ph ₂ C(OH)	в	30	10	64	190	Prisms			2.9	$C_{34}H_{31}NO_2$			2.9
a See Ex amine (see	perimental s Experiment	ection. b From EtOH tal section).	unless other StOAc.	rwise stated. 🦸	I.r. spectru	m iden	tical to specin	109 nen, m.p.	°C, pre	pared	from	4,6-diphenyl-2-j	oyridon/	e and	ethy l -

TABLE 1

immediately. By these methods benzophenone gave the alcohol (3a) (67%), ethyl benzoate gave the ketone (3b) (25%), and methyl iodide gave (1c) (25%) (Table 1). With *p*-toluonitrile the initial product (3g) cyclised spontaneously to the imidazo[1,2-*a*]pyridine (4) (20%).

Similarly, the anion (2c) generated from the N-ethyl

publication \ddagger) all showed ν (C=O) (pyridone) 1 640— 1 650; the ketones (3b) and (3e) gave an additional ν (C=O) at 1 705 and 1 690 respectively, whilst the

 \ddagger Sup No. 23154 (4 pp.). See Notice to Authors No. 7 (*J. Chem. Soc., Perkin Trans. 1,* 1980, Index issue) for details of the Supplementary publications scheme.

alcohols (3a), (3c—d) and (3f) had v(OH) 3 165—3 350 cm⁻¹, and (4) gave no characteristic band. The pyridone protons 3-H and 5-H in (3a—f) gave doublets (J 2 Hz) at δ 6.42—6.88 and 6.15—6.90 respectively, as in (1a—c). In (3a—b) the residual methylene group α - to nitrogen (1'-CH₂) gave a singlet at δ 5.30 whilst in (3c—f) the corresponding methine proton appeared at δ 4.30—5.30 as a quartet in (3c) and (3e), a pentet in (3d), and a triplet in (3f). The couplings $J_{1',2'}$ and $J_{1',2''}$ were all 7 Hz. The methyl groups in (3c—e) gave doublets at

were usually not detected (aldehyde and ketone nucleophiles gave normal products, see above).

The only isolable products were found by microanalysis to be formed from 2 mol equivalents of (1b) and 1 mol equivalent of the electrophile. On the basis of i.r., ¹H, and ¹³C n.m.r. spectra (see below) these products were assigned structure (5). Water as electrophile gave (5a), methyl iodide, ethyl iodide, benzyl bromide, and p-methylbenzyl bromide gave the alkylated products (5b—e), acetyl chloride the ketone (5f), ethyl chloro-

		ΤA	Bl	LE 2		
Preparation	of	series	Ι	anomalous	products	a

-

								Fo	und %	<u></u>		Rec	uired	%
	Pyridone		Metallation	Reaction	Yield		Crystn.	<u> </u>						<u> </u>
No.	N-subst.	R	time/min	time/h	(%)	M.p. (°C)	solvent ø	С	н	N	Formula	С	н	N
(5a)	Me	н	15	12	20	231 - 232	C.H.	82.4	5.7	5.2	C.H.N.O.	82.7	5.8	5.3
(5b)	Me	Me	5	12	50	287 - 288	PhMe	82.7	5.7	4.8	C., H., N.O.	82.8	6.0	5.2
(5c)	Me	Et	5	12	58	251 - 252	EtOAc	82.4	6.2	5.0	$C_{38}H_{34}N_2O_2$	82.9	6.2	5.1
(5d)	Me	PhCH ₂	15	12	54	233.5 - 234	PhMe	83.8	5.9	4.5	C43Ha4N2O2	84.3	5.9	4.6
(5e)	Me	p-MeC ₆ H ₄ CH ₂	15	12	63	236 - 236.5	PhMe 🕫	83.9	6.1	4.4	C44H38N2O2	84.3	6.1	4.5
(5f)	Me	MeCO	20	12	30	266 - 268	EtOH	80.6	5.6	4.6	$C_{38}H_{32}N_2O_3$	80.8	5.7	5.0
(5g)	Me	EtOCO	15	12	44	261 - 262	PhMe	78.5	5.7	4.7	$C_{39}H_{34}N_2O_4$	78.8	5.7	4.8
(5h)	Me	PhCO	30	12	32	270 - 271	C.H.	82.0	5.5	4.4	$C_{43}H_{34}N_2O_3$	82.0	5.4	4.5
(5i)	Me	p-MeOC₅H₄CO	30	12	30	254 - 255	C ₆ H ₆	80.2	5.4	4.2	C44H34N2O4	80.5	5.5	4.3
(5j)	Me	p-MeC ₆ H ₄ CO	30	12	16	269 - 270	EtOAc	82.4	5.6	4.3	$C_{44}H_{36}N_{2}O_{3}$	82.5	5.7	4.4
(5k)	Me	Br(CH ₂) ₃	30	8	54	216 - 217	EtOH	73.0	5.6	4.3	C39H35BrN2O2d	72.8	5.4	4.4
(6a)	Et	Me	30	12	51	217 - 220	EtOH	82.8	6.7	4.9	$C_{39}H_{36}N_{2}O_{2}$	82.9	6.5	5.0
(6b)	Bun	Me	30	12	43	205 - 206	EtOH	82.9	7.4	4.5	$C_{43}H_{44}N_2O_2$	83.2	7.1	4.5
a Deop	and he conone	I presedure (D)	All compounds	a much allicod	an prices	a Decaddition			1 - 0	0 00 00	I Double Doub		II D	-NI O

* Prepared by general procedure (B). * All compounds crystallised as prisms. * By addition of light petroleum, b. p. 60-80 °C. * Found: Br, 12.3. C₃₉H₃₅BrN₃O₂ requires Br, 12.4%.

 δ 1.65—1.73, whilst the methylene groups in (3f) gave a δ 1.05—1.70 multiplet and the methyl group a δ 0.70 triplet. The electrophile 2"-CH in (3d) gave a δ 6.29 doublet and the tolyl methyl group in (3d) and (4) a δ 2.25 singlet. Aromatic protons in (3a—f) and (4) gave multiplets in the region δ 6.9—7.9.

Series I Anomalous Products formed from Two Pyridone Moieties and Electrophile.—When the anion (2b) was generated in the usual way, *i.e.*, by addition of the Nmethylpyridone (1b) to LDA in tetrahydrofuran (THF) at -78 °C, in the absence of electrophile, and acid chloride, ester, alkyl halide, or water electrophiles were subsequently added, the normal α -substitution products

formate the ester (5g), benzoyl, anisoyl, and toluoyl chlorides the ketones (5h—j), and 1,3-dibromopropane the product (5k) in which one bromine remained undisplaced. Yields were generally moderate (see Table 2).

When the N-ethylpyridone (1c) was treated with LDA to generate anion (2c) and then treated with methyl iodide it gave the analogous anomalous product (6a), formed from 2 mol equivalents of (1c) and 1 mol equivalent of electrophile; N-n-butylpyridone (2d) with LDA and methyl iodide likewise gave product (6b).

Series II Anomalous Products formed from Pyridone, Alkyl-lithium, and Electrophile.—The N-ethylpyridone (1c) reacted with alkyl lithiums, followed by electrophiles, to give a further series of anomalous products (7a-g) (Table 3), in which one molecule of the alkyllithium added to the 3-position of the pyridone ring, and one molecule of electrophile to the 4-position. No products resulting from formation of the α -carbanion (2c) were detected. Ethyl-lithium, with water as electrophile, gave (7a), whilst methyl iodide as electrophile gave (7b), and p-chlorobenzoyl chloride and p-toluoyl chloride gave the ketones (7c) and (7d). n-Butyllithium, with benzoyl chloride, p-chlorobenzoyl chloride, and p-toluoyl chloride as electrophiles gave the ketones (7e-g). Yields were high to moderate.

The N-butylpyridone (1d) similarly gave products (8a-g) with alkyl-lithiums followed by electrophiles (Table 3). Using ethyl-lithium, (1d) with benzoyl chloride, *p*-chlorobenzoyl chloride, and *p*-toluoyl chloride as electrophiles respectively gave ketones (8a-c) in poor to moderate yield. Using n-butyl-lithium, (1d) with benzoyl chloride, *p*-chlorobenzoyl chloride, *p*- and *o*-toluoyl chlorides respectively gave ketones (8d-g) in good to excellent yield.

1982

The N-methylpyridone (1b) with ethyl-lithium, and methyl iodide as electrophile, similarly gave the product (9a). With butyl-lithium and p-toluoaldehyde as electrophile, (1b) gave (9b) (Table 4). Even with these alkyl-lithiums, however, (1b) tended to give the dimeric products (5), formed via the carbanion (2b), reflecting the greater acidity of the methyl α -protons in (1b) compared with the methylene protons in (1c—d).

In the ¹H n.m.r. spectra (Tables 4 and 5) the protons in the undisturbed pyridone ring in (5a-k) and (6a-b)gave 2 Hz doublets at δ 6.24—6.90 (3'-H) and 5.74—6.28 (5'-H): the corresponding signals in pyridone (1b) were at 6.79 and 6.34. The N-methyl group (1''' protons)

TABLE 3	
---------	--

Preparation of series II anomalous products ^a

	mpound	Nucleophile derived	Electrophile derived						Crystallis-	Fo	ound	%		Req	uired	%
	Pyridone	substituent	substituent	Metallation	Reaction	Yield		Crystal	ation		-슸_			6	-~-	
No.	N-subst.	R'CH ₂	R	time/min	time/h	(%)	м.р. (°С)	torm	solvent	C	н	N	Formula	ι	н	N
(7a)	Et	Et	н	45	4	75	115	Prisms	EtOH			4.4	$C_{21}H_{23}NO$			4.6
(7b)	Et	Et	Me	30	5	84	110 0	Prisms	EtOH	82.5	7.7	4.3	Ca2Ha5NO	82.7	7.9	4.4
									(abs.)							
(7c)	Et	Et	p-CIC ₆ H ₄ CO	30	5	78	235—245 b	Needles	EtOH	75.5	6.0	3.1	C28H26CINO2 C	75.7	5.9	3.2
									(abs.)							
(7d)	Et	Et	p-MeC _e H _e CO	45	6	69	220	Needles	EtOH	82.6	6.8	3.3	$C_{29}H_{29}NO_2$	82.2	6.9	3.3
									(abs.)							
(7e)	Et	Bun	PhCO	30	8	34	152	Prisms	EtOH	82.3	6.8	3.1	$C_{30}H_{31}NO_2$	82.3	7.1	3.2
(7f)	Et	Bun	p-CIC₅H₄CO	45	6	47	216	Prisms	EtOH	76.3	6.4	2.9	C ₃₀ H ₃₀ ClNO ₂ d	76.3	6.4	3.0
(7g)	Et	Bun	p-MeC ₄ H ₄ CO	45	8	43	195	Prisms	EtOH	82.5	7.5	3.1	C ₃₁ H ₃₃ NO ₂	82.4	7.4	3.1
(8a)	Bun	Et	PhCO	45	7	58	198	Prisms	EtOH	81.9	7.0	2.8	C _{so} H _{s1} NO ₂	82.3	7.1	3.2
(8b)	\mathbf{Bun}	Et	p-CIC ₆ H ₄ CO	30	7	36	204	Prisms	EtOH	76.5	6.6	3.0	CanHanCINO2 d	76.3	6.4	3.0
(8c)	Bun	Et	p-MeC_H_CO	30	8	32	170 0	Prisms	EtOH	82.3	7.9	2.8	C ₁ , H ₁ , NO ₂	82.4	7.4	3.1
(8ď)	Bun	Bun	PhCO	30	4	93	150	Needles	EtOH	82.6	7.5	3.0	CasHasNO.	82.5	7.6	3.0
. ,									(abs.)							
(8e)	Bun	Bun	p-ClC_H_CO	30	4	62	195	Needles	EtOH	77.0	6.9	2.8	CasHacINO, e	76.9	6.8	2.8
(8f)	Bun	Bun	∕p-MeČ , H,CO	30	5	84	192	Needles	EtOAc	82.6	7.6	2.9	C ₃₃ H ₃₇ NO,	82.6	7.8	2.9
(8g)	Bun	Bun	o-MeC H CO	30	5	84	131	Prisms	EtOH	82.5	7.9	2.9	C ₃₃ H ₃₇ NO ₂	82.6	7.7	2.9
(9a)	Me	Et	Me	45	10	51	147 0	Prisms	EtOH	82.3	8.1	4.5	C ₄ , H ₂ , NO	82.6	7.6	4.6
(9b)	Me	Bun	p-MeC ₆ H ₄ CH(OH) 45	12	12	207 0	Prisms	EtOH	82.0	7.5	3.1	C ₃₀ H ₃₃ NO ₂	82.0	7.6	3.2
a P	renared by a	eneral procedu	ure (C) b Decompo	ses c Found	· C1 7 8	С., Н.	CINO, requir	res C1 8 00/	d Found	· C1 7	5 C	н	INO requires C	7 5 %	e 1	haund

a Prepared by general procedure (C). b Decomposes. c Found: Cl, 7.8. C₂₈H₂₈ClNO₂ requires Cl, 8.0%. d Found: Cl, 7.5. C₃₀H₃₆ClNO₂ requires Cl, 7.5%. e Found: Cl, 7.1. C₃₂H₃₄ClNO₂ requires Cl, 7.1%.

Spectra of Series I Anomalous Products (5) and (6) (Tables 4--6).—All products (5a--k) and (6a--b) gave v(C=O) (pyridone) 1 650-1 660 and a further v(C=O) 1 655-1 670 for the dihydropyridone: these bands were unresolved in some cases (Table 5). The ketone pro-

(2)Me (7) (8) α ; R' = Me, R = H a; R' = Me, R = PhCOb; R = R' = Me $b; R' = Me, R = p - ClC_6H_4CO$ c: R' = Me, R = p-ClC₆H₄CO $c; R' = Me, R = p - MeC_6H_4CO$ $d; R' = Me, R = p - MeC_6H_4CO$ $d; R' = Pr^n, R = PhCO$ $e; R' = Pr^n, R = PhCO$ $e_{1}R' = Pr^{n}, R = p - ClC_{6}H_{4}CO$ $f: R' = Pr^n, R = p - ClC_6H_4CO$ $f: R' = Pr^n, R = p - MeC_6H_4CO$ $g; R' = Pr^n, R = p - MeC_6H_4CO$ $g; R' = Pr^n, R = o - MeC_6H_4CO$

a; R = R' = Me b; R' = Prⁿ, R = p - MeC₆H₄CH(OH)

in (5a—k) gave a singlet at δ 2.76—2.91, whilst the prochiral N-ethyl group in (6a) showed an ABX₃ system, with δ_A 2.75, δ_B 3.88, δ_X 0.81, J_{AB} 14 Hz and $J_{A,X} = J_{B,X} = 7$ Hz. The N-n-butyl group in (6b) gave a δ 0.65 CH₃ triplet, the prochiral N-CH₂ ABX₂ absorptions were probably at 2.85 and 2.50, other CH₂ absorbed at δ 0.8—2.0.

In the modified pyridone ring of (5b-k) and (6a-b), the 5-H signal was moved somewhat upfield to 5.28-5.72, appearing as a 1 Hz doublet due to W-coupling with 3-H. In (5a) 5-H gave a doublet at 5.40, with $J_{4.5}$ 5 Hz. The now aliphatic 3-H gave a δ 4.40-4.95 triplet in (5b-k) with symmetric 10--14 Hz couplings to the adjacent CH₂ protons. In (5a), 3-H showed an additional coupling $(J_{3,4} 4 \text{ Hz})$. In (6a and b) $\delta 3.9-4.4$ (3-H) contributed to a non-first order pattern with the bridging CH signal. In (5a—k) the prochiral protons of the bridging methylene group were magnetically nonequivalent and gave two double doublets 1"a-H at $\delta 2.74$ —3.05 and 1"b-H at $\delta 2.84$ —3.45 in (5b—k), with a small geminal coupling of 0-5 Hz. In (6a, b) the bridging methine group 1"-H gave a multiplet at 8 3.9-4.4. The 2"-methyl group in (6a) gave a δ 1.95 doublet (J 7 Hz); the analogous propyl group in (6b), gave δ 0.8-2.0 2"- and 3"-methylene multiplets and an 0.65 4"-methyl triplet. The electrophile-derived methyl groups in (5b, e, i and j) and (6a, b) gave singlets at δ 1.24—1.98, 2.24 and 3.70, for those attached to 4-C, aromatic ring, and oxygen, respectively. The Rsubstituent methylene protons in (5d-e) were nonequivalent: they gave & 6.43-6.45 and 6.73-6.79 doublets with J_{gem} 3—8 Hz. The ethyl groups in (5c) and (5g) gave ABX₃ systems with δ_A 1.62, δ_B 1.85, and

'H I	J.m.r. chemical sh	ifts ^a (p.p.m.	on δ scale) a	and couplin	g constants	(Hz) of se	eries I anom	alous pro	oducts			
		Unchanged p	oyridone ring	Modified p	yridone ring		1"-CH ₂					
~-	4-Substituent	3'-H »	5'-H %	5-H ¢	3-H ¢		CHH		CHH			
No.	R	(1 H, d)	(1 H, d)	(1 H, d)	(1 H, dt)	$J_{3,1'}$	(1 H, dd)	$J_{1'',1''}$	(1 H, dd)			
(5a)	н	6.75	6.21	5.40 d	4.82	12	3.00	5	3.45			
(5b)	Me	6.78	6.24	5.60	4.90	12	2.75	5	3.12			
(5c)	Et	6.80	6.25	5.60	4.90	12	2.75	<1	3.00			
(5d)	$PhCH_2$	6.75	6.20	5.31	4.88	14	2.90	5	3.09			
(5e)	$p-MeC_{6}H_{4}CH_{2}$	6.78	6.21	5.28	4.90	12	2.95	5	3.09			
(5f)	MeCO	6.75	6.28	5.48	4.40	10	2.74	<1	2.86			
(5g)	EtOCO	6.71	6.20	5.51	4.95	12	2.95	5	3.23			
(5h)	PhCO	6.90	6.21	5.72	5.00	12	2.95	<1	3.10			
(5i)	p-MeOC ₆ H ₄ CO	6.78	6.21	5.60	5.00	12	2.75	<1	2.84			
(5j)	p-MeC ₆ H ₄ CO	6.78	6.21	5.60	5.00	12	3.05	5	3.24			
(5k)	$Br(CH_2)_3$	6.71	6.19	5.50	4.88	12	2.74	5	2.98			
(6a)	Me ^e	6.75	6.12	5.72	4.40	f	4.40					
(6b)	Me ^g	6.24	5.74	5.57	3.90	f	3.90	—	—			

TABLE 4

^a Recorded in CDCl₃ with SiMe₄ as internal standard. ^b $J_{3',5'}$ 2 Hz. ^c $J_{3,5}$ 1 Hz. ^d $J_{3,4}$ 4 Hz and $J_{4,5}$ 5 Hz. ^e Derived from N-ethylpyridone.

Table 5
¹ H N.m.r. data ^a (continuing Table 4) and i.r. bands of Series I anomalous products

4-R Substituent

				<i>(</i>	CH ₂						
	1 Cubatituant	Aromatia	1/// СТТ	CIU	X	CUIT		CII	Ι.	r. v(C=O)/ci	m ⁻¹
No.	4-Substituent R	multiplet	(3 H, s)	(1 H)	$J_{ m gem}$	(1 H, m)	$J_{ m vic}$	(3 H)	2′-C=O	2-C=O	4R-C=O
(5a)	Н	7.0—7.6 (20 H)	2.82	3.92 (dd)	—	—	—		1 650	1 655	-
(5b)	Me	7.1—7.6 (20 H)	2.86		—	—		1.38 (s)	1 660	1 660	
(5c)	Et	7.1-7.6	2.85	1.62 (m)	22	1.85	7.3	0.62 (t)	$1\ 655$	1 665	-
(5 d)	$PhCH_2$	7.0-7.6	2.80	6.43 (m)	3	6.73	—		1 650	1 650	
(5e)	p-MeC ₆ H ₄ CH ₂	7.0-7.6	2.91	6.45 (m)	8	6.79		2.24 (s)	1 650	1 660	
(5f)	MeCO	7.1-7.6	2.78	<u> </u>	—	—	-	1.90 (s)	1 655	1 655	1 710
(5g)	EtOCO	7.1 - 7.5	2.78	3.97 (m)	14	4.06	7	1.10 (t)	1 650	1 660	1 720
(5h)	PhCO	(20 H) 7.0-7.5 (25 H)	2.88	—	—	—	—	—	1 660	1 665	1 700
(5i)	p-MeOC ₆ H ₄ CO	7.1-7.6	2.76	—	—	—	—	3.70 (s)	1 660	1 670	1 700
(5j)	<i>p</i> -MeC ₆ H₄CO	7.1-7.6	2.76	—		—	—	2.24 (s)	1 655	1 670	1 700
(5k)	$\operatorname{Br}(\operatorname{CH}_2)_3 {}^b$	7.0-7.6	2.81	с	—	с	—	_	$1\ 655$	1 670	
(6a)	Me ^{<i>a</i>}	7.1 - 7.6	2.75	—	_	_	_	1.37 (s)	1 650	1 670	
(6b)	Me I	6.8-7.5 (20 H)	2.45 2.85 g	<u> </u>	—	_	-	1.24 (s)	1 650	1 660	—

^a Recorded in CDCl₃ with SiMe, as internal standard; s = singlet, t = triplet, dd = double doublet, m = multiplet. ^b CH₂Br, $\delta 3.18$ (t) J 7 Hz. ^c Unresolved, $\delta 1.4$ —2.0 multiplet. ^d Derived from N-ethylpyridone. ^e 1^{'''}-Et: $J_{gein} 14$, $J_{vic} 7 Hz$. ^f Derived from N-butylpyridone. ^e 1^{'''}-Et: $J_{gein} 14$, $J_{vic} 7 Hz$. ^f Derived from N-butylpyridone. ^g 1^{'''}-Et: $J_{gein} 9$, $J_{vic} 4 Hz$.

TABLE 6 ¹³C N.m.r. spectra of Series I products ^a

R 4-R-CO (s) CH₂ (t) -CC 2'-CO (s) Aromatic multiplet 3'-C (d) 5'-C (d) 3-C (d) 1''-CH₂ (t) 1'''-CH3 СН₃ R (q) 32.40 31.98 (d) (s) No. (s) (q) 163.92 163.65 150.42 - 125.72149.42 - 127.07 107.93 41.03 42.14 н 7.68 65.63 48.1(5a) (5b Me Et 27.63 9.14 169.84 118 94 12 06 101 15 52 50 40 71 (50 (5d (5d) (5e) (5h) 163.65 163.61 163.61 163.50 163.80 163.74 163.80 $\begin{array}{r} 149.42 \\ -127.07 \\ 150.30 \\ -126.36 \\ 150.10 \\ -126.24 \\ 150.06 \\ -126.28 \\ 150.26 \\ -125.87 \\ 150.26 \\ -125.75 \\ 150.26 \\ -126.75 \end{array}$ $115.52 \\115.30 \\115.42$ 101.15108.15107.99108.0252.50 52.50 51.08 51.1040.71 44.90 45.33 45.33 42.14 41.90 41.34 41.38 39.99 40.25 41.15 31.98 32.10 31.90 31.85 32.17 31.93 31.96 33.51 47.07 46.58 .99 111.07 $110.19 \\ 110.02$ PhCH 20.95 169.93 194.65193.15 194.15 $115.42 \\116.04 \\115.24 \\115.27$ 109.55 107.84 107.91 106.41 105.20 105.09 49.78 48.81 48.78 57.56 57.42 57.56 169.45 169.49 169.43 (5i) (5j) $55.24 \\ 21.48$

In CDCl₃. b Doublet.

 $\delta_{\rm X}$ 0.62 for (5c) and $\delta_{\rm A}$ 3.97, $\delta_{\rm B}$ 4.06, and $\delta_{\rm X}$ 1.10 for (5g): $J_{\rm A,B}$ was 22 Hz in (5c) and 14 Hz in (5g), and $J_{\rm A,X} = J_{\rm B,X} = 7$ Hz in both cases. The assignment of the proton spectra in (5) and (6) was confirmed by double-resonance decoupling experiments, *e.g.* in (5b) irradiation of 3-H collapsed the 1"-CH₂ signals to two doublets (J 5 Hz): irradiation of either of the 1"-H positions caused the 3-H signal to become a doublet.

In the ¹³C n.m.r. spectra, with off-resonance C-H information, for products (5a-d) and (5h-j) (Table 6), the undisturbed pyridone ring gave the carbonyl 2'-C as a singlet, § 162.0-163.9 [cf. 163.78 in (1b)], vinyl carbons 3'-C and 5'-C as doublets at 107.8-115.3 and 101.2-108.2 respectively [cf. 114.9 and 107.2 in (1b)]. The signals for 4'-C and 6'-C were apparently hidden in the band of absorptions from the phenyl rings, 125.7-150.4. In the other ring the unconjugated amide carbonyl 2-C resonated further downfield as a 8 164.0-170.0 singlet; the vinyl 5-C shoulder at 115.2-124.0 as a doublet, whilst 6-C absorbed in the aromatic region. The sp^3 -hybridised ring carbons 3-C and 4-C resonated at higher field, methine 3-C as a doublet δ 48.8-65.6, whilst 4-C gave a singlet at δ 40.7–48.1 for R = alkyl and at 57.4—57.6 for R = aroyl. The bridging 1"-CH₂ showed as a δ 40.0–43.2 triplet, and 1^{$\prime\prime\prime$}-methyl as a 31.9-34.3 quartet. In the R substituents aroyl C=O gave a singlet 8 193.2-194.7, ethyl CH₂ in (5c) gave a triplet at 33.5, and benzyl CH₂ in (5d) a triplet at 46.6-47.1. The O-methyl group of (5i) displayed a quartet at 55.2, tolyl methyls of (5e) and (5j) at 21.0-21.5, the 4-C-methyl in (5b) showed at 27.6 and that in the ethyl group of (5c) at 9.1.

The high resolution mass spectrum (these results are part of the Supplementary publication) of (5a) gave the expected molecular ion m/e 522.23, and also the $(M - H)^+$ ion (probably 10), m/e 521.21. No M^{+*} was seen for (5b, f, and h—j); all lost the R substituent to give the m/e 521.22 ion (10). Further loss of the pyridone moiety gave the ion (11), m/e 274.12 as the base peak in all cases. The pyridone fragment (12) m/e 247.01 was another strong ion common to all the fragmentations. For (5h—j) fairly weak acylium ions from the aroyl substituted R were observed, m/e 105.03—135.04.

Spectra of Series II Anomalous Products (7)—(9) (Tables 7—9).—The i.r. spectrum (Table 8) of all products (7), (8), and (9) showed modified pyridone v(C=O) 1 630—1 665. The aryl ketones (7c)—(8f) gave an additional v(C=O) 1 660—1 690, some 20—30 cm⁻¹ lower than the corresponding band in Series I products.

In the ¹H n.m.r. spectra (Tables 7, 8) of products (9a, b) the residual *N*-methyl group (1'-CH₃) gave a δ 2.84—2.88 singlet. In the *N*-ethyl products (7a—g) the prochiral *N*-ethyl group gave an ABX₃ system with $\delta_{\rm A}$ 3.75—4.08 (1'a-H), $\delta_{\rm B}$ 2.80—3.30 (1'b-H), $\delta_{\rm X}$ 0.70—0.95 (2'-Me), $J_{\rm A,B}$ 14 and $J_{\rm A,X} = J_{\rm B,X} = 7$ Hz. Irradiation of 2'-Me decoupled 1'a-H and 1'b-H to an AB quartet.

TABLE 7

¹H N.m.r. chemical shifts ^a (p.p.m. on δ scale) and coupling constants (Hz) of Series II anomalous products

First	complex	coupled	system
	0011101010		

										1	"-CH	1						,
No.	4-Substituent R	Pyridone N-subst.	Alkyl- lithium	Aromatic multiplet (5-Н 1 Н, d)]3.5	3-H (1 H) J	3,1"a J	з.1"b (1''a-H 1 H) J ₁ ,	 'a,1''b	1''ь-н (1 н) J	1'', 2''	2''-CH ₂ or 2''-CH ₃	2	3''-CH ₂ (2 H, m)	J 3'',4''	4''-CH 3 (3 H, t)
(7a)	н	Et	Et	7.20-7.50	5.84	<1	3.52	b	b	1.60	14	1.3	7.0	1.00				
(7Ъ)	Me	Et	Et	7.10—7.50	5.64	1.5	(III) 2.50	5	12	(11) 1.25	14	(11) 1.10	7.0	(3 H +)				
(7c)	p-ClC ₆ H₄CO	Et	Et	(10 H) 7.10-7.62	5.73	2	(ddd)	5	11	1.50	14	(ddq)	7.5	(3 H, t)				
(7d)	<i>p</i> -MeC ₆ H ₆ CO	Et	Et	7.05-7.60	5.79	2	3.19	5	11	1.48 (dda)	14	1.15 (dda)	7.5	0.89 (3 H +)				
(7e)	PhCO	Et	Bun	(14 H) 7.10—7.90 (15 H)	5.78	2	(ddd) 3.65 (ddd)	5	12	(uuq) 1.40 (m)	13	1.00 1.38	- b	(3 H, t) 1.10 (2 H, m)	b	1.30	7	0.85
(7f)	p-CIC₅H₄ CO	Et	Bun	7.05—7.60 (14 H)	5.68	1.5	3.21 (ddd)	5	10	1.45 (ddq)	14	(III) 1.00	- b	1.0—1.4 (2 H, m)	b	1.01.4	6	0.73
(7g)	<i>р</i> -МеС ₆ Н ₄ СО	Et	Bun	6.95-7.60	5.75	2	3.25 (ddd)	5	12	1.25	13	1.10	b	1.05 - 1.7	b	1.05-1.7	7	0.80
(8a)	PhCO	Bun	Et	7.00-7.80	5.78	2	3.30	5	12	1.25	13.5	1.05	7.0	0.80				
(8Ъ)	p-ClC ₆ H₄CO	Bun	Et	(15 H) 7.04-7.58	5.64	1.7	(ddd) 3.13 (ddd)	4.4	10.9	(m) 1.46 (dex)	13.7	(m) 1.06 (dev)	7.45	(3 H, t) 0.88 (3 H, t)				
(8c)	<i>p</i> -MeC₄H₄CO	Bun	Et	7.00-7.65	5.75	1.5	3.30	5	10	1.20	13	1.02	7.5	0.80				
(8d)	PhCO	Bun	$\mathbf{B}\mathbf{u}^\mathbf{n}$	(14 H) 6.85—7.60	5.65	1.5	(add) 3.25	6	10	(m) 1.40	14	(m) 1.10	b	(3 H, t) 1.05—1.7	b	1.05 - 1.7	7	0,75
(8e)	p-ClC ₆ H ₄ CO	Bun	Bun	(15 H) 7.00-7.70	5.70	1.5	(ddd) 3.30	6	10	(III) 1.25	14	1.10	b	(2 H, H) 1.00-1.95	b	1.00 - 1.95	7	0.78
(8f)	p-M eC ₆ H₄CO	Bun	Bun	6.85-7.55	5.6 0	2	3.15	4	10	1.40	14	1.15	b	(2 H, H) 0.90 - 1.60	b	0.90—1.60	6	0.75
(8g)	o-MeC ₆ H₄CO	Bun	Bun	(14 H) 6,90-7.55	5.54	1	(ddd) 3.42	4.5	11	(m) 1.60	9	(m) 1.10	9	(2 H, H) 1.1-1.5	b	1.1 - 1.52	6	0.75
(9a)	Me	Me	Et	(14 H) 7.20-7.30	5.55	1	(uuu) 2.40	5	10	1.24	12	(11) 1.14	7	(2 H, III) 0.86 (2 H A)				
(9b)	<i>p</i> -MeC ₆ H₄CH(OH)	Me	Bun	6.80—7.30 (14 H)	5.36	2	(m) 3.05 (m)	b	b	(m) 1.24 (m)	b	(m) 1.1— 1.5 (m)	b	(3 H, t) 1.1-1.5 (2 H, m)		1.1—1.5		0.74

a Recorded in $CDCl_3$ with SiMe₄ as internal standard; s = singlet, d = doublet, t = triplet, q = quartet, sx = sextet, ddd = double doublet of doublets, dsx = doublet of sextets, ddq = double doublet of quartets, m = complex multiplet. b Not distinguishable due to overlap.

		Таві	LE 8			
¹ H N.m.r.	data a (continuing	Table 7) and	i.r. bands o	f Series II	anomalous	products

	4-Substituent	Pvridone	Alkvl-	4-Subst		1'-CH2 01	r 1'-CH3		9'-CH	34-04		A'-CH	I.r. vmax	(cm-1) b
No.	R	N-subst.	lithium	CH ₃	l'a-H	J1'8.1'h	1'ь-н (1 н)	L.	or 2'-CH	(2 H)	Ist of	(3 H. t)	2-C=0	4R-C=0
(7a)	н	Et	Et	5.08 (t) ¢	3.77	14	2.84	7	0.84	()	5 3 1 4	(, -,	1 650	
(7b)	Me	Et	Et	1.55 (s)	(1 H, SX) 3.85	14	(SX) 3.30	7	(3 H, t) 0.90				1 660	
(7c)	p-CIC ₆ H₄CO	Et	Et		(1 H, sx) 4.08	14	(sx) 3.03	7	(3 H, t) 0.78				1 640	1 680
(7d)	p-MeC_H_CO	Et	Et	2.33 (s)	(1 H, sx) 4.07	14	(sx) 3.02	7	(3 H, t) 0.77				1 640	1 680
(7e)	PhCO	Ft	Bun		(1 H, sx)	14	(sx)		(3 H, t)				1 040	1 000
()	1100	Dt	Dua		(1 H sr)	14	2.00 (st)	'	(3 H +)				1 640	1 680
(7f)	p-ClC ₆ H ₄ CO	Et	Bun		4.04	14	2.98	7	0.75				1 64 0	1 680
(7g)	<i>p</i> -MeC ₆ H ₄ CO	Et	Bun	2.30 (s)	(1 H, SX) 4.00	14	(SX) 2.95	7	(3 H, t) 0.70				1 650	1 680
(8a)	PhCO	Bun	Et		(1 H, sx) 3.95		(sx) 2.95		(3 H, t) 1.00-1.45		7	0.70	1 630	1 685
(01)		Due	P 4		(1 H, c)	10.0	(c)		(2 H, c)					
(00)	<i>p</i> -cic ₈ H ₄ CO	Bun	Et		3.98 (1 H ddd)	13.8	2.87	a	e (2 H)	0.93 (sx)	7.3	0.64	1 630	1 690
8c)	p-MeC _e H ₄ CO	Bun	Et	2.35 (s)	4.00		3.05		1.02 - 1.35	1.02—1.35 (c)	6	0.80	1 650	1 675
(8d)	PhCO	Bun	Bun		(1 H, c) 3.95	14	(c) 2.85		(2 H, c) 1.05—1.75	1.05-1.75 (c)	7	0.65	1 64 0	1 660
(0.)	A CIC H CO	Dun	D		(1 H, c)	• •	(c)		(2 H, c)	100 1000	~	0.04		
(66)	p-cic ₆ H ₄ CO	Бци	Bun		4.00 (1 H c)	14	3.00		1.00-1.95	1.00—1.95 (c)	7	0.64	1 640	1 660
(8f)	$p-MeC_{6}H_{4}CO$	Bun	Bun	2.25 (s)	3.90	14	2.95		0.90-1.65	0.95—1.65 (c)	6	0.65	1645	1 660
(8g)	o-MeC ₆ H ₄ CO	Bun	Bun	2.40 (s)	(1 H, C) 3.65	13	(c) 3.15		(2 H, c) 0.98—1.50	0.98—1.50 (c)	6	0.65	1 64 0	1 680
(0.)	N.		-		(1 H, ddd)		(ddd)		(2 H, c)					
(9a)	me	ме	Et	1.42 (<u>s</u>)	2.84								1665	
9b)	p-MeC ₆ H ₄ CH(OH) f	Me	Bun	2.20 (s)	(3 H, s) (3 H, s)								1 630	

* Recorded in CDCl₃ with SiMe₄ as internal standard; s = singlet, d = doublet, t = triplet, q = quartet, sx = sextet, dd = double doublet of doublets, c = complex multiplet. * Recorded in CHBr₃. c J 5 Hz. 4 J₁·a, a'a 5.6; J₁·a, a'b 8.8; J₁·b, a'b 8.7; J₁·b, a'b 6.1 Hz. e 2'a-H 1.22, 2'b-H 1.09 (arbitrarily assigned) J_{2', 3'} 7.5 Hz. f C-H 2.09 (s), OH 4.96 (s), v(OH) = 3 300 cm⁻¹.

			1	ABLE	9		
13C	N.m.r.	spectra	^a of	Series	п	anomalous	products

Compd. no.	. R Electrophile	Pyridone N-subst.	Alkyl- lithium	2-C=O (s)	3-C (d)	4-C (s)	5-C (d)	1'-C (t)	2'-C	3'-C (t)	4'-C (q)	1′′-C (t)	2''-C	3''-C (t)	4′′-C (q)	R-CO (s)	4-R-Me A (q) 1	Aromatic ø nultiplet
(7Ь)	Me	Et	Et	172.75	55.98	42.12	117.66	37.96	13.21 (a)			20.64	12.65 (a)				27.92	126.28— 143.93
(7c)	p-CIC ₆ H ₆ CO	Et	Et	172.02	52.51	59.29	109.05	37.72	13.71 (a)			19.52	11.83 (1)			194.68		126.55-
(7d)	<i>p</i> -MeC _€ H _€ CO	Et	Et	172.28	52.69	59.35	109.98	37.69	13.64			19.55	11.89			195,54	21 .50	126.61-
(7e)	PhCO	Et	$\mathbf{B}\mathbf{u}^\mathbf{n}$	172.54	50.96	59.36	109.91	37.69	13.73			29.12	25.95	22.66	13.73	196.26		126.70-
(7f)	∕p-ClC ₆ H₄CO	Et	Bun	172.31	50.59	58,98	109.10	37.41	(q) 13.45			28.78	25.61	22,32	13.45	194.71		126.52-
(7g)	p-MeC₅H₄CO	Et	Bun	172.50	50.87	59.18	110.02	37.55	13.62			29.00	25.80	22.52	13.54	194.63	21.41	126.17-
(8b)	p-ClC ₆ H ₄ CO	Bun	Et	172.20	52.55	59.18	108.55	42.62	(q) 30.71	19.73	13.62	19.55	11.86			194.56		144.15 126.58—
(8d)	PhCO	Bun	Bun	172.61	50.73	59.18	109.32	42.51	(t) 30.65	19.73	13.62	29.12	(q) 25.95	22.54	13.62	196.09		144.66 126.58—
(8e)	p-ClC₅H₄CO	$\mathbf{B}^{\mathbf{u}\mathbf{n}}$	Bun	172.47	50.65	59.10	108.53	42.54	(t) 30.61	19.65	13.66	28.98	(t) 25.81	22.52	13.54	194.54		144.08 126.54—
(8g)	o-MeC _€ H ₄ CO	Bun	Bun	172.70	50.88	59.26	109.55	42.59	(t) 30.60 (t)	19.78	13.74	29.14	(t) 26.02 (t)	22.61	13.74	195.60	21.55	144.58 126.60 143.95

" In $CDCl_3$ with $SiMe_4$ as internal standard. b Includes 6-C signal.

In the N-n-butyl products (8a-g), both the 1'- and 2'-methylene protons formed magnetically non-equivalent pairs. The 360 MHz spectrum of (8b) was well resolved and particularly informative. It showed l'a-H and 1'b-H as doublets of double doublets, centred on δ 3.98 and 2.87 respectively, with geminal $J_{1'a,1'b}$ 13.8 Hz and vicinal $J_{1'a,2'a}$ and $J_{1'a,2'b}$ 5.6 and 8.8 Hz and $J_{1'b,2'a}$ and $J_{1'b,2'b}$ 6.1 and 8.7 Hz. The 2'a- and 2'b- CH_2 protons gave complex multiplets centred on δ 1.22 and 1.08. The magnetically equivalent 3'-CH₂ protons gave a sextet at δ 0.93, with $J_{2',3'} \approx J_{3',4'} \approx 7$ Hz, and 4'-Me gave a 8 0.62 triplet. Irradiation of 4'-Me decoupled 3'-CH, to a 7 Hz triplet. Irradiation of 1'a-H or 1'b-H decoupled the other to a triplet having a further 2-3 Hz coupling, and decoupled 2'-a-H and 2'-b-H to slightly simpler patterns.

In the 220 or 100 MHz spectra of (8a) and (8c-g) the

1'a-H and 1'b-H similarly gave doublets of triplets δ 3.65–4.04 and 2.85–3.15 with $J_{1'a,1'b}$ 9–14 Hz and $J_{1',2'} \approx 7$ Hz, 2'-CH₂ and 3'-CH₂ multiplets in the region 0.9–1.3, and 4'-Me triplets 0.65–0.70.

In all products (7), (8), and (9), 5-H gave a 2 Hz doublet at δ 5.36—5.79 [double doublet in (7a)], similar to the Series I products. Proton 3-H was seen either as a finely split doublet of doublets, or an unresolved multiplet. In the ethyl-lithium derived products (7a d) and (8a—c), 3-H and the prochiral 3-ethyl substituent form an ANMX₃ system with δ_A (3-H) 2.05— 3.20, δ_N (1"-Ha) 1.20—1.48, and δ_M (1"-Hb) 1.05—1.15, (where distinguishable) δ_X (2"-CH₃) 0.80—1.07. $J_{N,M}$ is estimated to be *ca.* 14 Hz, $J_{A,M}$ 10—12 Hz, and $J_{A,N}$ 5 Hz. For the n-butyl-lithium products (7e—g) and (8d—g), part of an ANMX₂ (X further coupled) system, resulting from 3-H and the prochiral 3-n-butyl sub-

1982

stituent, was visible, with δ_A (3-H) 3.15—3.65, δ_N (1''-Ha) 1.25—1.60, δ_M (1''-H_b) in the region 1.0—1.4 (overlapped with other signals) with $J_{N,M}$ estimated as 12—14, $J_{A,N}$ as 10—12, and $J_{A,M}$ as 4—6 Hz. Other methylene protons (3''-CH₂) in the 4-n-butyl substituents gave δ 1.0—1.4 multiplets, and 4''-CH₃ displayed 0.73—0.85 triplets, with $J_{3'',4''}$ 7 Hz. Irradiation of 3-H in (7d), (7f), and (8b) decoupled 5-H to a singlet and in the 3ethyl product (7d) decoupled the two H-1'' multiplets to sextets. The toluoyl 4-substituents, R, gave δ 2.25— 2.35 methyl singlets, the 4-methyl group in (7b) a 1.55 singlet, and 4-H in (7a) a triplet at 5.14. The methine proton in the 4-substituent tol-CHOH in (9b) gave a δ 4.96 doublet, coupled to OH. The aromatic protons (7)—(9) formed multiplets, δ 6.8—7.9.

The off-resonance ¹³C spectra of (7b—g) and (8b, d, e and g) (Table 9) showed $\delta_{C=0}$ 172.2—172.8 for 2-C, ca. 2 p.p.m. lower field than series I, with a further $\delta_{C=0}$ at 194.6—196.3 for the aryl ketones. Vinyl carbon 5-C gave a doublet at δ 108.6—110.0 [except in 4-alkyl compound (7b) δ 5-C 117.7] whilst 6-C was obscured by the clustered aromatic signals which occurred in the region δ 126.2—144.7. Quaternary 4-C gave a singlet at δ 59.0—59.4 [except in (7b); δ 4-C 42.1] and methine 3-C a doublet at δ 50.6—56.0. The methylene signals 1'-C gave triplets at δ 37.4—42.6 and 1''-C triplets at 19.5—29.1. For the compounds containing n-butyl groups, other methylene signals came in the range 19.5—30.7 (see Table 9). Methyl groups gave quartets at δ 11.8—13.7 (aliphatic) and/or 21.4—27.9 (tolyl).

The mass spectra of (7c, e, and g) and (8d—g) (these results are part of the Supplementary publication) showed intense molecular ions (13) for the N-ethyl compounds (7), but extremely weak M^{+*} (13) for N-nbutyl analogues (8). Loss of H• gave $(M - 1)^+$ ions of similar abundance to M^{+*} in most cases. The major fragment ions arose from M^{+*} as in Scheme 1, firstly by loss of the 4-aroyl substituent to give the even-electron ions (14), which were the base peaks. Consecutive losses of ethylene or butene from the 1- and 3-positions of (14) led first to ion (15) and then to (16). Fragmentation from M^{+} of the aroyl substituents also gave rise to more or less intense acylium ions.

Modified Anomalous Products giving Pyridones.—We sought to provide further evidence for structures (5)—(9) by constructing analogues in which the group introduced at the 4-position by the electrophile would itself be a reasonable leaving group, so as to eliminate with 3-H, thereby restoring the aromatic 2-pyridone ring. The N-methylpyridone (1b) was treated with LDA, followed by diphenyl disulphide. As anticipated, the initial product spontaneously lost thiophenol to give the pyridone (17) (Scheme 2). The N-ethylpyridone (1c) treated with ethyl-lithium followed by toluene-p-sulphonyl chloride similarly gave pyridone (18) (45%) by elimination of C₇H₇SO₂H from the initial Series II product.

The bis-pyridone (17) gave ν (C=O) 1 650 cm⁻¹ whilst (18) gave ν (C=O) 1 640 cm⁻¹. The ¹H n.m.r. of (17) showed a δ 3.1 (3 H) singlet for N-methyl and a 5.3 (2 H) singlet for 1"-CH₂, whilst 5-H gave a 5.83 (1 H) singlet. The unmodified pyridone ring disclosed 3'-H and 5'-H as 1 Hz doublets, respectively at δ 6.36, and 6.12, whilst aromatics gave a 20 H multiplet from δ 7.10—7.40. The 1,3-diethylpyridone (18) gave 5-H as a δ 5.88 singlet, and the ethyl groups as first-order patterns, 1'-CH₂ and 1"-CH₂ giving quartets respectively at δ 3.90 and 2.49, and 2'-CH₃ and 2"-CH₃ giving triplets at 1.15 and 1.07, with $J_{1',2'} = J_{1'',2''} = 7$ Hz. The 10 H aromatic multiplet extended over δ 7.05—7.75.

The ¹³C spectrum of (17) showed two C=O singlets, at 163.9 and 161.9, both very similar to $\delta_{\rm C}$ (C=O) 163.7 in (1b). Aromatics gave a band of signals δ 150.2—125.3. The vinyl carbons show as three doublets, at 114.9 (3'-C), 110.2 (5'-C), and 108.1 (5-C). By comparison, in (1b) 3-H and 5-H respectively gave δ 115.0 and 107.7 doublets. The N-methyl group in (17) gave a δ 34.3

quartet [34.1 in (1b)] and the methylene $1^{\prime\prime}$ -C a 43.2 triplet.

Mechanism of Formation of Anomalous Products.—The Series I products (5) are initiated by generation of the α carbanion (2b). We suggest that this adds to the 4position of a further molecule of pyridone (1b) giving the enolate (19), and that the key step is the rearrangement (19) \longrightarrow (20), an intramolecular alkylation of the enolate, forming the resonance-stabilised 1,3-diphenylallyl anion (20). Alkylation of the 4-position of (20) by electrophiles then gives the Series I products (5) (Scheme 3).

Series II products are thus formed *via* similar generation and rearrangement of the enolate (21) to the allyl anion (22).

Alternatively, direct addition could occur at the 3position (helped by co-ordination of the lithium atom to the carbonyl oxygen) to give (20) [or (22)] without the intermediate formation of (19) [or (21)]. This interpretation has the advantage of avoiding the necessity of a preferential alkyl shift (19) \longrightarrow (20) or (21) \longrightarrow (22) when an aryl shift might be expected.

Possible Alternative Structures.—Mechanisms similar to the above could also give rise to products of structure (23) if the allyl anions (20) and (22) were alkylated in the 6positions. Alternatively, rearrangement of the nucleophile in (19) and (21) to the 5-position could give rise to structure (24). Isomeric pyridones to (17) and (18) could be formed via structures (23) or (24). I.r. spectra are not useful in distinguishing structures (5)—(9) from (23) or (24): conjugated and unconjugated dihydropyridones which serve as models have similar v(C=O).³ We base our choice of structures (5)—(9) on the $\delta_{\rm C}$ of the quaternary ring carbon, which is 40.7—48.1 where the electrophile substituent is alkyl, and 57.4—59.4 where this is aroyl. We would expect these values to be ca. 15—20 p.p.m. higher in (23) and (24), in which this carbon is adjacent to nitrogen, cf. 4-hydroxy-1,6,6-trimethyl-2-phenylpiperidine ⁴ in which δ_{6-C} is 63.5 p.p.m. (OH-equatorial) or 58.9 (OH-axial).

EXPERIMENTAL

M.p.s were determined using a Reichert hot-stage apparatus. Spectra were recorded with a Perkin-Elmer 297 grating i.r. spectrophotometer, a Unicam SP800 u.v. spectrophotometer; Perkin-Elmer R12 (60 MHz), Varian HA-100 (100 MHz) and JEOL FX-100 (¹³C, at 25.05 MHz) n.m.r. spectrometers; Kratos MS 25 (low resolution) and AEI MS-9 (high resolution) mass spectrometers. Other n.m.r. spectra were measured at the PCMU, Harlow (220 MHz) and the University of Edinburgh (360 MHz). Compounds were purified until observed as single spots on t.l.c. [Kieselgel GF 254 (type 60)]. Tetrahydrofuran (THF) was used freshly distilled from LiAlH₄, and alkyl-lithiums were standardised by titration ⁵ before use. Lithium diisopropylamide (LDA) was generated as described in the preceding paper.¹

1-Ethyl-4,6-diphenyl-2-pyridone (1c).—4,6-Diphenyl-2pyrone ⁶ (3.0 g, 0.012 mol) and 70% aq. EtNH₂ (16.2 g, 0.25 mol) were heated in a Carius tube at 140 °C for 12 h. Evaporation at 50 °C and 20 mmHg, and crystallisation from EtOH gave the *pyridone* (2.0 g, 60%) as prisms, m.p. 108—109 °C (Found: C, 82.9; H, 6.2; N, 5.0. C₁₉H₁₇NO requires C, 82.9; H, 6.2; N, 5.1%); v_{max} (CHBr₃) 1 650 cm⁻¹; δ (CDCl₃) 1.15 (3 H, t, J 5 Hz), 3.90 (2 H, q), 6.30 (1 H, d, J 2 Hz), 6.78 (1 H, d, J 2 Hz), and 7.40 (10 H, s).

1-Methyl-4,6-diphenyl-2-pyridone (1b) was similarly prepared using 30% aqueous MeNH₂: it crystallised as needles (66%), m.p. 92 °C (lit.,⁷ m.p. 92 °C); v_{max} (CHBr₃) 1 650 cm⁻¹; δ (CDCl₃) 3.36 (3 H, s), 6.3 (1 H, d), 6.89 (1 H, d), and 7.20-7.65 (10 H, m).

1-*n*-Butyl-4,6-diphenyl-2-pyridone (1d) was prepared by the literature method: ⁸ it gave prisms (65%), m.p. 94— 97 °C (lit.,⁸ m.p. 98—99 °C) (Found: C, 83.3; H, 6.9; N, 4.4. Calc. for $C_{24}H_{19}NO$; C, 83.2; H, 6.9; N, 4.6%); ν_{max} (CHBr₃) 1 650 cm⁻¹; δ (CDCl₃) 0.60 (3 H, t), 0.9—1.8 (4 H, m), 3.90 (2 H, t), 6.35 (1 H, d), 6.90 (1 H, d), and 7.31— 7.55 (10 H, m).

General Procedures for Metallation.—(A) LDA (4 mmol) in THF (5 ml) was added at -78 °C to a solution of the pyridone (4 mmol) and the electrophile (4—7 mmol) in THF (5 ml) at -78 °C, under dry N₂, with stirring. After having been allowed to warm to 20 °C, and stirred for t_2/h (see Table 1) the solution was evaporated at 20 mmHg and 40 °C, water (30 ml) added, and the mixture extracted with CH₂Cl₂ (3 × 25 ml); the extracts were dried (MgSO₄) and evaporated at 20 mmHg and 30 °C to give the product.

(B) To LDA (4 mmol) in THF (10 ml) under N₂ at -78 °C, with stirring, was added the pyridone (4 mmol) in THF (3 ml). After t_1 /min the electrophile (4 mmol) in THF (3 ml) was added, and stirring continued for 1 h at -78 °C and t_2 /h (see Tables) at room temperature. Water (1 ml) was added and the solvent evaporated at 50 °C and 20 mmHg. The residue in CH₂Cl₂ (60 ml) was washed with

brine (20 ml) and water (20 ml), and the solution dried (Na₂SO₄) and evaporated at 40 °C and 20 mmHg, to give the product.

(C) To a solution of the pyridone (4 mmol) in THF (10 ml), at -78 °C under dry N₂, with stirring, was added the alkyl-lithium (4 mmol) in hexane or ether (ca. 5 ml). After t_1 /min the electrophile (4 mmol) in THF (5 ml) was added, and stirring continued for t_2/h (see Tables), the solution being allowed to warm to 20 °C. The solvent was evaporated at 50 °C and 20 mmHg, and water (50 ml) was added. Extraction with $CHCl_3$ (3 \times 30 ml), drying (Mg- SO_4), and evaporation of the extract at 40 °C and 20 mmHg yielded the product.

2-(4-Methylphenyl)-5,7-diphenylimidazo[1,2-a]pyridine

(4).—1-Methyl-4,6-diphenyl-2-pyridone (1.0 g, 4 mmol) was treated with 4-toluonitrile (0.44 g, 4 mmol) by general procedure (B). Purification of the product by preparative t.l.c. [Kieselgel PF 254, EtOAc-light petroleum, (b.p. 60-80 °C) (2:3) gave the *title compound* (0.26 g, 19%) as pale yellow needles, m.p. 199.5-200 °C (EtOAc) (Found: C, 86.5; H, 5.5; N, 7.7. C₂₆H₂₀N₂ requires C, 86.6; H, 5.6; N, 7.8%); $\nu_{max.}$ (CHBr₃) 1 600 (C=N), 1 500, and 1 450 cm⁻¹; δ (CDCl₃) 2.3 (3 H, s), 6.95 (1 H, d, J 1 Hz), 7.12 (1 H, d, J 6 Hz), 7.30 (1 H, d, J 1 Hz), and 7.4-7.8 (14 H, m).

1-Methyl-3-(2-oxo-4,6-diphenyl-1-pyridylmethyl)-4,6-

diphenvl-2-pyridone (17).--1-Methyl-4,6-diphenyl-2-pyridone (1.0 g, 3.8 mmol) was treated with diphenyl disulphide (0.82 g, 3.8 mmol), following general procedure (A). The product was purified by preparative t.l.c. [Kieselgel PF 254, EtOAc-light petroleum (b.p. 60-80 °C)] to give the title pyridone (0.18 g, 18%) as colourless prisms [toluenelight petroleum (b.p. 60-80 °C)], m.p. 132-133 °C (Found: C, 83.2; H. 5.5; N, 5.3. C₃₆H₂₈N₂O₂ requires C, 83.1; H, 5.4; N, 5.4%); $\nu_{max.}$ (CHBr₃) 1 650 cm⁻¹; δ (CDCl₃) 3.1 (3 H, s), 5.3 (2 H, s), 5.83 (1 H, s), 6.12 (1 H, d, J 1 Hz), 6.36 (1 H, d, / 1 Hz), and 7.1-7.4 (20 H, m); $\delta_{\rm C}({\rm CDCl}_3)$

34.34 (q), 43.21 (t), 107.7 (d), 108.14 (d), 110.25 (d), 114.96 (d), 115.0 (d), 125.3-150.2 (m), 161.95 (s), and 163.95 (s).

1,3-Diethyl-4,6-diphenyl-2-pyridone (18).-1-Ethyl-4,6-diphenyl-2-pyridone (1.0 g, 3.6 mmol) was treated with ethyl-lithium (4 mmol) and toluene-p-sulphonyl chloride (0.77 g, 4 mmol) following procedure (C). Crystallisation of the crude product from EtOH gave the pyridone (18) (0.5 g, 45%), as prisms, m.p. 109 °C (Found: C, 82.8; H, 6.6; N, 4.5. $C_{21}H_{21}NO$ requires C, 83.1; H, 7.0; N, 4.6%); $\nu_{C=O}$ 1 640 cm⁻¹; δ 1.07 (3 H, t), 1.15 (3 H, t), 2.49 (2 H, q), 3.90 (2 H, q), 5.88 (1 H, s), and 7.1-7.4 (10 H, m).

We thank the Consejo Nacional de Ciencia y Tecnologia (Mexico) for a scholarship (to H. J. S.) and Universiti Teknologi Malaysia for a grant (to Z. B.) and the Minna-James-Heineman-Stiftung (Hannover for a grant (to N. G.).

[1/089 Received, 20th January, 1981]

REFERENCES

¹ A. R. Katritzky, J. Arrowsmith, Zakaria bin Bahari, C. Jayaram, T. Siddiqui, and S. Vassilatos, J. Chem. Soc., Perkin Trans. 1, 1980, 2851.

² (a) For a preliminary communication see A. R. Katritzky, N. E. Grzeskowiak, H. J. Salgado, and Zakaria bin Bahari, Tetrahedron Lett., 1980, 4451; (b) For a review on dipole stabilised carbanions see P. Beak and D. B. Reitz, Chem. Rev., 1978, 78,

 275.
 ³ A. J. Verbiscar and K. N. Campbell, J. Org. Chem., 1964, 29, 2472.

⁴ K. Ramalingam, K. D. Berlin, N. Satyamurthy, and R. Sivakumar, J. Org. Chem., 1979, 44, 471.
 ⁵ S. C. Watson and J. F. Eastham, J. Organomet. Chem., 1967,

9, 165.

 ⁶ F. Arndt and B. Eistert, *Chem. Ber.*, 1925, **58**, 2318.
 ⁷ I. E.-S. El-Kholy, F. K. Rafla, and M. M. Mishrikey, *J.* Chem. Soc. C, 1970, 1578.

⁸ J. Faust, G. Speier, and R. Mayer, J. Prakt. Chem., 1969, **311**, 61.